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Executive Summary
Rapid progress in the field of artificial intelligence (AI) over the past decade has generated 
both enthusiasm and rising concern. The most sophisticated AI models are powerful — but 
also opaque, unpredictable, and accident-prone. Policymakers and AI researchers alike fear 
the prospect of a “race to the bottom” on AI safety, in which firms or states compromise on 
safety standards while trying to innovate faster than the competition. Yet the empirical record 
suggests that races to the bottom are uncommon, and previous research on AI races has been 
almost entirely theoretical.

This paper therefore assesses empirically how competitive pressures — economic and political 
— have affected the speed and character of AI research and development (R&D) in an industry 
with a history of both extensive automation and impressive safety performance: aviation. Based 
on interviews with a wide range of experts, findings show limited evidence of an AI race to the 
bottom and some evidence of a (long, slow) race to the top. In part because of extensive safety 
regulations, the industry has begun to invest in AI safety R&D and standard-setting, focusing 
on hard technical problems like robustness and interpretability, but has been characteristically 
cautious about using AI in safety-critical applications. This dynamic may also be at play in other 
domains, such as the military. These results have implications for policymakers, regulators, 
firms, and researchers seeking to maximize the upside while minimizing the downside of 
continued AI progress.  

Key findings:

• In most industries, the empirical evidence of racing to the bottom is limited. Previous 
work looking for races to the bottom on environmental, labor, and other standards suggests 
that race-to-the-top dynamics may be equally or more common. In the case of AI specifically, 
few researchers have attempted to evaluate the empirical evidence of a race to the bottom.

• In the aviation industry, the lack of AI-based standards and regulations has prevent-
ed the adoption of safety-critical AI. Many modern AI systems have a number of features, 
such as data-intensivity, opacity, and unpredictability, that pose serious challenges for tradi-
tional safety certification approaches. Technical safety standards for AI are only in the early 
stages of development, and standard-setting bodies have thus far focused on less safety-critical 
use cases, such as route planning, predictive maintenance, and decision support.
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• There is some evidence that aviation is engaged in a race to the top in AI safety. 
Industry experts report that representatives from firms, regulatory bodies, and academia 
have engaged in a highly collaborative AI standard-setting process, focused on meeting 
rather than relaxing aviation’s high and rising safety standards. Meanwhile, firms and gov-
ernments are investing in research on building certifiably safe AI systems.

• Extensive regulations, high regulatory capacity, and cooperation across regulators 
all make it hard for aviation firms to either cut corners or make rapid progress on AI 
safety. Despite the doubts raised by the tragic Boeing 737 crashes, regulatory standards 
for aviation are high and relatively hard to shirk. The maintenance of high safety standards 
depends in part on regulators’ power to impose significant consequences on firms when 
they do attempt to cut corners.

Recommendations:

• Policymakers: Increase funding for research into testing, evaluation, verification, 
and validation (TEVV) for AI/autonomous systems. Expeditious progress in the TEVV 
research agenda will unlock significant economic and strategic benefits, in aviation as well 
as other safety-critical industries. Aviation firms will invest in parts of the TEVV research 
agenda unprompted, but universities and AI labs are more likely to drive much of the fun-
damental progress required for safety-critical AI. 

• Regulators: Provide incentives for firms to share information on AI accidents and 
near-misses. Aviation regulators have deliberately developed forums, incentives, and 
requirements for sharing information about possible safety hazards. Historically, firms have 
recognized that they will not be punished for being open about mistakes, and that they 
benefit from learning about others’ safety difficulties.   

• Firms: Pay the costs of safety in advance. Conventional wisdom in the aviation industry 
holds that software defects that cost $1 to fix in requirements or design cost $10 to fix 
during a traditional test phase and $100 to fix after a product goes into use. As the capital 
costs of training AI systems increase, and AI use cases become higher-stakes, firms will 
need to invest early in verification and validation of AI systems, which may include funding 
basic AI safety research. 

• Researchers: Analyze the relationship between competition and AI safety on an 
industry-by-industry and issue-by-issue basis. This paper’s findings affirm that the 
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competitive dynamics surrounding AI development will likely vary from one industry and 
issue area to the next. Microsoft’s recent call for regulation to prevent a race to the bottom 
in facial recognition technologies suggests that safety is not the only area in which race 
dynamics could have socially harmful effects. And different industries vary considerably 
in their norms, market structures, capital requirements, and regulatory environments, all 
of which affect competitive dynamics. Of special interest is the military avionics industry: 
preliminary findings from this paper suggest, contrary to media accounts, that the U.S. 
military may be even slower to adopt AI than the commercial aviation industry, and has 
made significant investments in AI safety research.
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Introduction
Concerns are rising about a possible race to the bottom on AI safety.1 AI systems are often 
opaque and display unpredictable behavior, making it difficult to evaluate their reliability or 
safety.2 Yet politicians, defense officials, and police departments have sometimes shown more 
enthusiasm for novel applications of AI than awareness of the accident risks these applications 
might pose.3 Some observers worry, in particular, that the popular but misleading narrative of 
an “AI arms race” between the United States and China could lead the two countries to take 
greater risks with safety as each hurries to develop and deploy ever-more powerful AI systems 
before the other.4 In the words of Paul Scharre, former Special Assistant to the U.S. Under 
Secretary of Defense for Policy, “For each country, the real danger is not that it will fall behind 
its competitors in AI but that the perception of a race will prompt everyone to rush to deploy 
unsafe AI systems.”5 

In the private sector, too, AI developers have expressed worries that economic competition 
might lead to the sale of AI systems with impressive capabilities but weak safety assurances. 
AI research lab OpenAI, for example, has warned that artificial general intelligence (AGI) 
development might become “a competitive race without time for adequate safety 
precautions.”6 And while fears of an AI race to the bottom often center on safety, other issues, 
like deliberate misuse of AI, raise similar concerns. Consider Microsoft, which has actively 
advocated for new regulations for AI-based facial recognition technologies on this basis, with 
president Brad Smith stating, “We believe that the only way to protect against this race to the 
bottom is to build a floor of responsibility that supports healthy market competition.”7

But current discussions of the existing or future race to the bottom in AI elide two important 
observations. First, different industries and regulatory domains are characterized by a wide 
range of competitive dynamics — including races to the top and middle — while claims about 
races to the bottom often lack empirical support.8 Second, AI is a general-purpose technolo-
gy with applications across every industry; we should therefore expect significant variation in 
competitive dynamics and consequences for AI from one industry to the next. For example, 
self-driving car firms entering the highly competitive automotive industry have invested heavily 
in AI safety research, and fully autonomous vehicles will likely make driving far safer in the long 
run.9 Differences in AI use cases, safety norms, market structures, capital requirements, and, 
perhaps especially, regulatory environments all plausibly affect the willingness of firms and 
states to invest in, or compromise on, standards, regulations, and norms surrounding the use 
and abuse of AI systems. 
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This paper therefore proposes analyzing the nature of competitive dynamics surrounding 
AI safety on an issue-by-issue and industry-by-industry basis. Rather than discuss the risk of 
“AI races” in the abstract, this research focuses on the issue of AI safety within commercial 
aviation, an industry where safety is critically important and automation is common. Do the 
competitive dynamics shaping the aviation industry’s development and rollout of safety-critical 
AI systems and technical standards constitute a race to the bottom, a race to the top, or a 
different dynamic entirely?

To answer this question, the paper draws on interviews with more than twenty subject-matter 
experts, including commercial pilots, system safety engineers, standard-setters, regulators, 
academics, and air traffic controllers. The results suggest that the aviation industry has so far 
approached AI with great caution. For safety-critical use cases, such as autonomous flight or air 
traffic control, AI simply will not be used in the foreseeable future. And while timelines are long 
for safety-critical AI for aviation, firms like Airbus and Boeing are investing in AI-related R&D 
in hopes of eventually developing autonomous systems that can meet the industry’s high and 
ever-rising safety standards. In short, the industry is engaged in a (long, slow) race to the top.

The findings from this research have implications for both policymakers and researchers. 
They suggest the need for further investment in AI safety, to speed up the race to the top and 
ultimately unlock significant benefits in industries like aviation. The results also highlight the 
critical role that industry-specific standards and regulatory environments play in shaping racing 
dynamics and suggest the value of an industry-by-industry exploration of AI races. We should 
expect important variation in how different industries respond to continued AI progress: there 
will be not one, but multiple AI races worthy of study.

The next section briefly reviews existing literature on races to the bottom, middle, and top, 
and argues for the value of exploring these dynamics in the aviation industry specifically. The 
subsequent section marshals evidence from interviews and publicly available data suggesting 
that aviation is engaged in a “race to the top” toward AI safety. It then explores the factors 
underlying this dynamic, and the extent to which they might apply — or be desirable — in other 
industries. The penultimate section makes recommendations for policymakers, regulators, 
firms, and researchers seeking to accelerate the flight to safety-critical AI. The paper concludes 
with an overview of implications for future policy research focused on accident risks from AI 
technologies.
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Theory and Methodology
The logic of “races to the bottom” is intuitive and appealing. Like firms engaged in a price 
war, investment-strapped states gradually reduce the constraints on firm behavior — typically 
standards or regulations governing labor, the environment, safety, and other variables — 
until the benefits of attracting foreign investment are outweighed by the social costs of 
compromised labor laws, increased pollution, and other regulatory compromises.10 

Consider, for example, the widely-cited competition between New Jersey and Delaware in the 
late 19th century, in which the two states competed to slash corporate regulations in order to 
attract more investment.11 This dynamic — now often referred to as “The Delaware Effect” 
— left Delaware with some of the most business-friendly corporate laws in the United States, 
and today more than two-thirds of Fortune 500 companies are incorporated in Delaware.12 
A similar logic has been applied to firms: in order to remain competitive, corporations might 
cheat on existing standards or lobby for lower standards, in order to save on the time and cost 
of compliance.

Claims of such races to the bottom have featured prominently in many important policy 
debates of the last few decades. In 1969, for example, images of the beaches of Santa Barbara, 
California in the aftermath of a major oil spill came to symbolize the race to the bottom in 
environmental standards, contributing to the passage of U.S. environmental regulations in 
the 1970s.13 More recently, critics of trade agreements such as the Trans-Pacific Partnership 
have argued that trade agreements may induce races to the bottom on a range of issues: 
for example, if firms can easily relocate their business to new countries, this might induce 
countries to lower their labor standards in an effort to lure and retain foreign direct 
investment.14 

The notion of a possible race to the bottom in safety standards for AI specifically is relatively 
new but rising in prominence, perhaps especially within the U.S. national security community. 
For example, Larry Lewis, Director of the Center for Autonomy and Artificial Intelligence at 
CNA, wrote in a recent article, “A transformative technology like AI can be used responsibly 
and safely, or it could fuel a much faster race to the bottom.”15 Similarly, former Secretary of 
the Navy Richard Danzig, in a report on risks from rapid development of AI, synthetic biology, 
and other emerging technologies, concludes that “superiority is not synonymous with security: 
There are substantial risks from the race.”16 
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Increased attention to the prospect of races to the bottom in AI safety is importantly related 
to the confused, albeit attention-grabbing narrative of an “AI arms race” between the United 
States and China. To some U.S. defense officials, China’s recent progress and eagerness to 
invest in AI suggest analogies to the Cold War build-up of nuclear weapons. The “AI arms race” 
narrative has gained traction across the web: prior to 2016, a Google search for the phrase “AI 
arms race” yielded just 300 hits, but in 2020, the same phrase yields more than 100,000 hits.17 

This Cold War analogy is flawed, likely doing more to exacerbate tensions with China than to 
clarify the competitive dynamics surrounding AI development.18 General purpose technologies 
like electricity likely provide a more appropriate analogy to AI than nuclear weapons do.19 
Even so, some fear that the arms race narrative could nevertheless contribute to a race to the 
bottom between the United States and China, especially given the souring of relations between 
the two nations in recent years.20 

Considering the substantial influence that the race to the bottom narrative has had in policy 
debates, we might expect the empirical record to show strong evidence of such races, both within 
AI safety and more broadly. In fact, however, the evidence of races to the bottom is surprisingly 
elusive across most industries and issue areas.21 Indeed, the race to the bottom dynamic may not 
explain even the eponymous case of Delaware.22 Meanwhile, some scholars have documented a 
“California Effect,” in which larger firms actively encourage states and countries to impose more 
extensive regulations, which can serve as barriers to entry for start-up firms lacking the capital 
and know-how to achieve compliance.23 Recent literature on the closely related “Brussels Effect” 
shows that a similar race-to-the-top dynamic obtains at the global level.24

The academic literature considering races to the bottom specifically in the domain of artificial 
intelligence is thin and almost entirely theoretical. Work on the subject typically avoids claiming 
that a race to the bottom is, in fact, likely.25 As one recent paper notes, “Instead of offering 
predictions, this paper should be thought of as an analysis of more pessimistic scenarios.”26 

Thus, despite the growing prominence of the AI race to the bottom narrative, previous work 
has left largely unexamined the empirical question of whether any industries currently show 
signs of compromising on AI safety standards.27 This is an oversight: AI systems are in ever-
wider use, and firms, regulators, and states are actively grappling with the serious challenges 
posed by AI safety. This paper thus starts from the premise that, while AI remains an emerging 
technology, it is possible and valuable to make an empirical study of early efforts to set 
standards for safety-critical AI.28
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WHY AVIATION?

The first challenge for any empirical analysis of AI racing dynamics is that AI is a general 
purpose technology with applications across every industry, and competitive dynamics will vary 
from one industry to the next. This paper therefore focuses on a single industry — aviation — 
rather than attempting to explore multiple industries at once. To further narrow the aperture, 
this paper focuses specifically on “safety-critical” AI applications, which face a different set of 
regulatory requirements from non-safety-critical applications (Box 1).

Box 1. What is “safety-critical AI”?

This paper follows the definition of AI used by the Organisation for Economic Co-operation and 

Development (OECD): “An AI system is a machine-based system that can, for a given set of human-

defined objectives, make predictions, recommendations, or decisions influencing real or virtual 

environments. AI systems are designed to operate with varying levels of autonomy.”29 Note that while 

many systems captured by this definition pose safety problems, many more do not. See Hernandez-

Orallo et al. (2019) for a survey of safety risks associated with AI.30

“Safety-critical AI” describes any AI system for which unintended behavior could be extremely costly. 

Safety-critical systems — from control systems for trains and planes to nuclear power plants — 

typically go through extensive and costly testing, evaluation, verification, and validation (Box 2) before 

being certified for use. Some AI applications in the aviation industry do not qualify as “safety-critical.” 

For example, a faulty AI-based route planning system could result in flight delays, but likely not a 

serious accident. By contrast, a fully autonomous AI system responsible for managing plane takeoffs 

and landings would qualify as safety-critical, because failure could result in a collision or other accident.

A second challenge is data availability. As discussed in the next section, commercial applications 
of AI — though quickly rising in popularity — remain relatively rare, especially in safety-critical 
domains. In most industries, standard-setting bodies have only just begun work on modifying 
existing standards to account for AI. Quantitative data on AI adoption and use cases in a given 
industry often does not exist. But qualitative data gathered from subject-matter experts, 
though less precise, can offer insights into the current status and future trajectory of racing 
dynamics in a given domain. 

The aviation industry’s experiences with AI safety are especially interesting for two reasons. 
First, aviation is exceptionally safety-conscious. The tragic Max 737 crashes have justifiably 
cast doubt on the continued reliability of both Boeing and the Federal Aviation Administration 
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(Box 4). Yet these crashes stand out against an exceptional safety track record. Table 1 
presents statistics from Barnett (2020), disaggregated into three groups of nations: “first 
world,” “advancing,” and “less-developed.” Across all three groups, accident rates have fallen 
dramatically over each of the last three decades, typically by a factor of two or more. As 
Barnett notes, accident rates in the “traditional first world” between 2008-2017 were so low 
that a child boarding a flight in the United States had a higher chance of growing up to be a 
U.S. president than of dying in a plane crash.31 Fatality rates are far higher in less-developed 
countries, though China and Eastern Europe have achieved “first-world” levels of safety over 
the past decade.
 

Table 1. Fatality risk per flight boarding across three groups of countries, 1988–201732

1988–1997 1998–2007 2008–2017

Traditional first world 1 in 4.4 million 1 in 10.8 million 1 in 28.8 million

Advancing 1 in 1 million 1 in 1.9 million 1 in 10.9 million

Less developed 1 in 200,000 1 in 400,000 1 in 1.3 million

Second, relative to other industries with exceptional safety performance — for example, the 
nuclear power industry — aviation is much more exposed to market forces. While heavy 
regulations, high capital requirements, and other features have led to significant market 
concentration, even large duopolistic firms like Boeing and Airbus face pressure to innovate at 
the cutting edge while saving costs wherever possible. The pressure to automate is especially 
fierce: most air accidents are at least partly the result of human error, thus reducing reliance 
on humans for safety-critical functions can reduce the risk of accidents and their financial and 
reputational consequences.33 Partly for these reasons, the jobs of air traffic controllers and 
pilots are among the most heavily automated in the U.S. economy.34

In short, aviation’s combination of safety-criticality and competitiveness make it an ideal 
industry in which to explore AI safety racing dynamics. The next section therefore takes a deep 
dive into the industry, drawing on interviews with a range of experts to determine both the 
intensity and nature of AI racing dynamics.
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A Long, Slow Flight  
to AI Safety

What might the aviation industry have to gain from AI — and what makes “safety-critical AI” 
a difficult problem? What are the current status and trajectory of AI in the aviation industry, 
and are there any signs of a race to the bottom? Finally, what are the consequences — positive 
and negative — of extensive safety regulations in the aviation industry? This section draws 
on publicly available materials and interviews with a range of aviation experts to probe these 
questions. 

Because of the wide range of stakeholders involved in aviation safety and the lack of existing 
research in this area, interviewees were sourced from a wide range of backgrounds. They 
included air traffic controllers, academics working at the intersection of technical AI safety 
and aviation, safety engineers at both large and small manufacturers of aircraft, developers 
supplying AI-based applications to aviation firms, experts in cybersecurity for aviation, and a 
commercial pilot. A number of interviewees had experience across multiple industries aside 
from aviation, including self-driving cars, utilities, and semiconductors. Given the focus of this 
paper on commercial aviation, just two interviewees had experience in military aviation: further 
research in this domain would benefit from exploring the extent to which the findings of this 
paper generalize to the military setting.

In light of the diversity of individuals interviewed for the paper, interviews were unstructured, 
focusing on each interviewee’s area of expertise. The results from this paper should therefore 
be understood as preliminary: future work might profitably test this paper’s conclusions more 
systematically, perhaps through structured interviews or an expert survey.  

Overall, the results suggest that, despite the economic and safety benefits of AI, aviation has 
taken a (characteristically) conservative approach to AI adoption. Regulators and firms alike 
have focused their efforts on setting standards, especially for less safety-critical applications of 
AI, such as predictive maintenance and route planning. At the same time, they are investing in 
AI safety research, which promises to unlock safety-critical applications that are currently off 
the table. The section concludes with a discussion of the likelihood and potential consequences 
— both positive and negative — of extensive AI safety regulations in other industries.
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THE APPEAL OF SAFETY-CRITICAL AI FOR AVIATION

Safety-critical AI offers a range of potential benefits to both aviation firms and regulators, 
which could plausibly induce a race-to-the-bottom dynamic in the absence of regulation. 
First among those benefits are the cost savings that AI applications could enable. As noted in 
the previous section, compared with other safety-critical industries, aviation faces significant 
pressures to cut costs. One interviewee with experience in both the aviation and utilities 
industries emphasized that aviation is more highly exposed to market forces relative to other 
safety-critical industries such as the nuclear industry: “Nuclear is a very high-risk operation 
and extremely technical—but it operates within a fence, which can provide more operational 
predictability compared to aviation,” the expert argued. “Nuclear operations are also somewhat 
more insulated from radical market forces. Since they are part of utilities, which are most often 
natural monopolies, costs for maintaining safety margins are set within strong regulatory cost 
controls. . . . With airlines, if you get spikes in fuel costs or coronavirus, you don’t know if you’ll 
survive. Margins have always been extremely tight and uncertain; there’s incredible pressure 
to improve efficiency, while making sure the safety margin remains acceptable. As in all safety-
sensitive industries, catastrophic loss can mean the loss of the company.”

Given the pressure to cut costs, safety-critical AI may eventually become a necessity for 
airlines, manufacturers, and suppliers hoping to remain cost-competitive. For example, 
regulations previously required three pilots on any commercial flight; today, only two are 
required. As one interviewee said, “In the end [for manufacturers and airlines], everything 
is about money. One experienced pilot can cost $300,000 per year — that’s a huge figure.” 
Interviewees said they believe that AI will allow airlines to remove the remaining co-pilot 
from most planes, and in the long run, will replace human pilots entirely. Airbus, for example, 
successfully executed a fully automated takeoff in January, 2020, with help from an AI-based 
vision system.35 The company has plans to complete a fully automated taxi and landing by the 
mid-2020s.36 A similar trend holds in air traffic control, which in the United States ranked as 
the sixth-most heavily automated job over the past two decades (“pilots, copilots, and flight 
engineers” ranked third).37 

Another potential advantage of safety-critical AI is the speed with which it can be developed, 
relative to more traditional software. Hard-coding safety-critical software is time-intensive, 
requiring consideration of innumerable edge cases (Box 2). By contrast, AI systems can serve 
as a relatively lightweight alternative. An interviewee who had worked on implementing AI in 
a decision-support context noted, “You can either hard-code systems manually to do certain 
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functions, or use AI so you can do it quicker. . . . You can spot a specific problem, then train an 
AI model quite quickly, test it, then get significant benefits.” This is possible in part because the 
aviation industry collects a tremendous amount of data, which makes it possible to quickly train 
data-hungry AI models. As one expert working on air traffic control (ATC) said: “ATC analysis, 
radar data analysis, capacity studies—it won’t be long before others reach into this space. We 
have so much structured data.”

Box 2. Costs of safety-critical software certification

Some interviewees expect certifying AI systems to be faster and cheaper than traditional software 

certification in many cases. If true, this could be a major benefit of AI within the aviation industry, 

because traditional software certification is very expensive. For experienced teams, certification — 

which involves rigorous design, documentation, and testing to ensure that a software tool is virtually 

failsafe — can increase development costs by 20 to 40 percent. Most teams lack the requisite 

experience, however: on average, software certification adds 75 to 150 percent to total development 

costs.38 Among the most important cost drivers is documentation. One interviewee, discussing 

past experience working with a software company supplying the aviation industry, underscored the 

documentation challenge: “We did an estimate on numbers of lines, comparing documentation and 

code, and it’s a tenfold difference. You have to create all these documents whenever you introduce a 

change. You have to use all this tracking.” 

Of course, even if certifying AI systems does reduce cost relative to traditional software, certification 

will continue to be expensive, perhaps giving firms incentives to take shortcuts where they can. 

This suggests the importance of giving regulators the power to impose real costs on shirkers when 

accidents do happen (see Box 4 for more).

In addition to the economic pressures faced by companies, regulators face political pressure 
to proactively prepare for an AI future. One interviewee, for example, suggested that if the U.S. 
Federal Aviation Administration were to reject a company’s AI application because it simply did 
not understand how the application worked, the company might complain to its local member 
of Congress, with potential political consequences for the FAA. As an interviewee from FAA 
put it, “We are trying to get out ahead of somebody showing up and saying, ‘Oh, by the way, we 
have this disruptive technology that we’re using.’”

Additional pressure stems from fears of falling behind regulators in other regions. In particular, 
one interviewee from Europe highlighted concerns about falling behind China and the United 
States. When asked what the consequences of falling behind might be, she referenced a meet-
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ing with regulators from the Civil Aviation Authority of China (CAAC): “They have no problem 
managing the whole aviation sector from China. But what about autonomy? What about sover-
eignty? Behind AI, there are these security dimensions. How much information do you want to 
share?” Other EU-based interviewees did not echo these concerns about China, but affirmed 
that European aviation regulators and air traffic control providers pay close attention to other 
regulatory bodies, particularly the FAA in the United States.

Firms thus have economic incentives to develop and implement safety-critical AI, while regula-
tors face pressures to keep up with both the pace of AI development in the private sector, as 
well as the pace of regulators in other nations. For now, however, significant bureaucratic and 
technical obstacles stand in the way of widespread adoption of AI. The next section discusses 
these obstacles in greater detail.

TECHNICAL AND BUREAUCRATIC OBSTACLES TO SAFETY-CRITICAL AI

While the promise of AI is significant, interviewees agreed that the certification of AI systems 
remains a core obstacle. Software certification for aviation is expensive and time-intensive in 
general, and AI introduces additional bureaucratic and technical hurdles. 

First, current aviation safety standards, regulations, and approaches simply were not designed 
with AI in mind. Existing standards will thus require significant revisions before AI systems can 
be pronounced sufficiently safe to deploy, at least in safety-critical functions. As one expert 
noted, certifying AI in aviation is “absolutely a challenge, because there’s no guidance or 
requirements that I can point to and say, ‘I’m using that particular requirement.’”

Why does AI pose a problem for existing standards, regulations, and protocols? Experts 
interviewed consistently pointed to two major concerns, which also feature prominently in 
technical AI safety research (see Box 3): 

Opaque, unpredictable algorithms. Many AI systems, particularly deep learning systems, are 
unpredictable in the sense that they react in surprising ways to slight perturbations of input. 
They are also opaque, meaning that regulators cannot easily probe the logic of a system to 
understand when such reactions are likely to occur. As one interviewee noted, “You can test 
the model one million times, but you still don’t know what might happen the next time. . . . You 
might develop a very sophisticated algorithm that appears to work every time. But in the end, is 
it certifiable?” Another interviewee suggested a significant distinction between automation and 
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AI: “Automation is very simple, you want a system that always does the same thing. AI is just the 
opposite! You’re never sure if it will reproduce the same thing.” 

Heavy reliance on data. Another point of concern is that most modern AI systems rely heavily 
on data. The aviation industry does not have well-established procedures for certifying data-
intensive, safety-critical systems. One FAA systems safety engineer recounted a meeting with a 
firm that had developed an application using data from an aircraft engine. The data contained 
many missing values, and in the process of filling in the gaps, the firm had made a number 
of unjustified assumptions. In the process, the FAA expert noted, they “may have missed a 
potential event that could eventually turn into an accident.” 

Box 3. The nascent AI safety research subfield

Despite the significant technical challenges standing in the way of safety-critical AI, recent develop-

ments in research labs and academia provide grounds for optimism. Technical AI safety research agen-

das have proliferated over the last three years, laying the groundwork for progress on thorny problems 

with AI, such as the problems of explaining how a machine learning model arrived at a given prediction 

(“explainability”) or predicting whether an algorithm will behave sensibly in novel environments (“ro-

bustness”).39 Because many of these issues pose significant hurdles to bringing AI-based products to 

market, the researchers working on them have begun to attract private investment, including from the 

aviation industry. 

Meanwhile, in the public sector — especially at large agencies like the Department of Defense — 

researchers have begun work on the testing, evaluation, verification, and validation (TEVV) of AI-based 

systems. Indeed, the Defense Advanced Research Projects Agency has made TEVV for AI/autonomy a 

core focus through a range of programs, including a program dedicated to “Explainable AI and Assured 

Autonomy.”40 

The significant increase in AI safety research in academia, for-profit companies, and public agencies 

suggests we will likely see progress on some of the vexing technical problems presented by AI. The 

question, of course, is whether increased safety research will keep up with the exploding number of AI 

applications across the global economy.

These and other technical features common to many AI systems pose problems for safety 
certification. Regulators cannot evaluate the details of the safety case of every novel aviation 
application from scratch; instead, they typically delegate much of the certification process 
to firms, which becomes much more straightforward with the benefit of standardized 
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performance benchmarks. One interviewee, an FAA safety delegate, affirmed that it is simply 
ineffective for regulators to dissect the details of the safety case for every new aviation 
application: “The regulators can’t look at everything we look at; it’s not humanly possible.” 
Another interviewee, an AI engineer working on decision support for aviation, echoed this 
sentiment: “In our industry, they [regulators] don’t really care about Caffe1 vs Caffe2, how 
many layers, and [other details of  a given machine learning model]. We get questions about 
the entire safety case. It doesn’t matter what the values of the neurons are, just what the 
end-to-end performance is.” Interviewees working on safety certification for AI described the 
need for extensive conversations with regulators, focused on building trust and developing 
shared expectations around how to measure safety performance. While these conversations 
are necessary at this early stage, they come at a price paid in time, money, and regulatory 
overhead.

Simply put, standards for safety in aviation are exceptionally high. As one safety expert put it, 
“No combination of failures can be more likely than one in a billion. Which seems like a crazy 
number — but it does drive architecture schemes.” Continuing to drive down accident risks, 
especially in the first world, will be difficult. In 2017, for example, there were just eight deaths 
worldwide attributable to commercially scheduled flight accidents. (In 2018 and 2019, by con-
trast, the Max 737 crashes caused more than one hundred deaths each.)41 The bar is therefore 
high for novel applications of technologies like AI, especially in safety-critical functions.  

ASSESSING THE EVIDENCE OF AN AI RACE IN AVIATION

Given the attractions and challenges of safety-critical AI for aviation, this section takes stock of 
the industry’s approach to AI thus far. At a high level, while experts interviewed were optimistic 
about the prospects for AI in the long term, all expected the industry to proceed slowly with 
safety-critical AI for the foreseeable future. The focus, for now, is on standard-setting for non-
safety-critical uses of AI. And while there is limited evidence of a race to the bottom, there 
is some evidence of a race to the top. Firms are investing in the development of technical 
standards for safety-critical AI, as well as R&D for AI-enabled systems, with the understanding 
that meeting aviation’s safety standards will be a difficult, decades-long process.

Interviewees were virtually unanimous in the assessment that, for the time being, safety-critical 
AI is close to non-existent in the aviation industry. In explaining why, they cited first and fore-
most a lack of technical safety standards and safety regulations. In an industry where regulatory 
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approval is a necessity, standards and regulations are crucial for reducing firms’ uncertainty 
about whether expensive R&D will result in certifiably safe, marketable applications. Unfortu-
nately, setting up technical standards, regulations, and certification processes for safety-critical 
AI is likely to be a years- or decades-long process. Because so much air traffic flows across na-
tional borders, international coordination on aviation safety standards is critical, and this takes 
time. The long journey toward safety-critical AI is only just beginning. 

Early work on standard-setting has begun within the joint working group on artificial intelli-
gence for aviation set up by U.S.-based SAE International and EUROCAE, an EU-based organi-
zation.42 Formed in 2019, this group is working at the cutting edge in standard-setting for AI in 
aviation. Yet so far, the group has focused on non-safety-critical use cases, such as predictive 
maintenance and route planning. Because progress requires continuous input, and a measure 
of consensus, from stakeholders from academia, industry, and national and regional regulatory 
bodies, standard-setting is a slow process. 

In focusing on less safety-critical applications, the EUROCAE-SAE working group aims to 
test out new regulatory approaches in contexts where lessons learned could be applied to 
more safety-critical contexts. This is typical of the industry’s treatment of new technologies, 
according to one expert from the EU: “As usual in aviation, you start using it in the best 
conditions, then build confidence and see how far you can go,” she said.43 Another expert 
affirmed that maintenance is a particularly promising place to test out new approaches to 
standard-setting for AI, which could then transfer to other, more complex areas: “You might 
think these [maintenance vs. flight control] are two different topics. But if you look at the 
technical challenges, the underlying problems are similar.”

Once developed in working groups, AI standards will take years to propagate into real-world 
safety certification processes. Bodies like the International Civil Aviation Organization will draw 
on privately developed standards to develop their own standards and recommendations, coor-
dinating across the many UN member states. Then, national or regional regulators such as the 
U.S. Federal Aviation Administration and the European Union Aviation Safety Agency (EASA) 
will translate these and other standards into binding regulations and certification procedures 
for firms in their respective jurisdictions. This process, too, will involve time-intensive coordina-
tion: regulators typically make arrangements for the reciprocal recognition of safety certifica-
tions, but this is only feasible insofar as regulators trust and understand each others’ processes.

Firms do have the option of developing AI applications before safety standards have been 
modified. Doing so, however, requires building a compelling “safety case” in the absence of 
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widely accepted benchmarks and certification protocols, introducing uncertainty and delay to 
the development and certification processes. Of course, firms can and do sometimes attempt 
to obscure important technical changes to regulators, as the Max 737 crashes made tragically 
clear. But when accidents happen, they must deal with often severe financial consequences, as 
well as intense scrutiny by both regulators and the public (Box 4).

Box 4. The Max 737 crashes and the importance of 
empowering regulators

On October 29, 2018, a Boeing Max 737 plunged into the Java Sea, thirteen minutes after takeoff from 

Jakarta, killing all 189 people onboard. Four months later, on March 10, 2019, another Max 737 crashed 

— this one six minutes after takeoff from Addis Ababa, killing all 157 people onboard. 

The Max 737 crashes demonstrate the tragic consequences of cutting corners on safety. Reporting on 

the Max 737 crashes showed that Boeing had deliberately obscured from regulators a major change to 

the flight control software involved in both crashes.44 Airbus’ release of its A320neo aircraft generated 

intense pressure at Boeing to build the Max 737 as quickly as possible.45 Had the change been flagged, 

airlines would have been required to retrain their pilots in flight simulators, which is expensive and time 

intensive.46

The crashes also make it clear why such corner-cutting behavior is so rare in aviation. Boeing could, in 

principle, obscure a wide range of novel technologies from regulators, in order to save time and money 

on the front end. But the company answers to regulators when things go wrong. Boeing has estimated 

that the grounding of its 737 planes has cost $20 billion dollars (Figure 1).47 If the aviation industry is 

conservative in advancing new technologies, this is in part because of regulators’ power to make firms 

pay the price for their recklessness.

Figure 1. Boeing Revenue, 2005–2019
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The serious financial consequences that attend any aviation accident mean that all stakehold-
ers, including for-profit firms, have a genuine interest in improving safety standards to the 
greatest extent possible. But there are important differences in incentives between regula-
tors and the firms they regulate. One interviewee, a participant in the EUROCAE-SAE working 
group, described those differences as follows: “Companies want to push forward with this 
agenda [developing AI standards], because then they can develop new products that are more 
appealing to customers. That’s very roughly their approach. On the other hand, research insti-
tutes or universities approach the process from a scientific point of view: knowledge creation 
is their main objective. Researchers want to understand the technicalities and specifics of these 
areas, without an interest in implementation. When it comes to regulators, they want to make 
sure that safety is not compromised, because they are accountable for safety. They want to 
make sure they have a 360-degree view of this problem, with everyone having a voice. So for 
them, safety is the number one priority, even if that compromises development speed.” The 
same speaker also reflected, however, that despite these differences in incentives, the stan-
dard-setting process is relatively collaborative and productive: “You might expect that there are 
different stakeholders with different objectives with different points of view. But in the end it 
works pretty well.”

National regulators have, for the most part, not yet begun the process of developing safety 
regulations for AI. But if and when such regulations are developed, experts indicated they 
see little chance of a “Delaware Effect” emerging. Indeed, their assessments of the history of 
aviation safety regulation more often described something like the “Brussels” or “California” 
effects. One expert in air traffic control in Europe noted that the FAA, in particular, is often 
viewed as a model by other regulatory bodies: “With the FAA being such a strong, independent 
regulator, quite often people will look at FAA to see what its position or policy is.” 

This relative alignment of incentives around raising rather than compromising safety standards 
and regulations is quite necessary, because aviation manufacturers largely handle certification 
themselves. The 737 crashes generated skepticism about the wisdom of delegating certification 
to firms, but the practice goes back decades and has historically worked well. As one expert 
working on certifying AI for air traffic control noted, “It’s not that you’re trying to overcome 
a hurdle. . . . If you want to do something like this, then you have to prove it to your own 
organization as much as to the regulator.”

For now, the lack of established standards and the technical difficulty of assuring AI safety 
make it difficult to imagine very ambitious safety-critical AI applications for aviation in the near 
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future. Instead, firms and regulators alike are relatively aligned in the goal of setting up techni-
cal standards for AI that match or improve upon the the industry’s current safety standards. 
Recognizing both the benefits and difficulties that safety-critical AI presents, firms are investing 
to some degree in new AI technologies, but may be hesitant to take the risk of commercial 
implementation until standards and regulations exist. The use of AI so far has been limited to 
lower-stakes contexts where it presents both economic benefits and safety improvements, 
typically in areas like decision-support and maintenance. The next section illustrates this assess-
ment with a case study of AI for air traffic control.

CASE STUDY: AI FOR AIR TRAFFIC CONTROL

This section documents one of the most ambitious efforts to integrate AI into a safety-critical 
context: NATS’ and Searidge Technologies’ experiment with AI for air traffic control at London 
Heathrow Airport. The case highlights both the benefits of AI, and the limits of safety-critical 
use for the time being.

The skies of London are exceptionally congested. Approximately 180 million passengers arrive 
at, or depart from, London’s six airports every year, making the city the busiest airspace in the 
world. Yet despite its high volume of air traffic, London has just eight runways. By comparison, 
the world’s second-busiest airspace — New York City, with 20 percent less air traffic — has 
twelve runways. Most of London’s crowded runways therefore operate continuously at 99 
percent capacity, with zero tolerance for human or technical error.48

Adding to the challenge, London air traffic control (ATC) must contend with a great deal of 
cloud cover. Its ATC towers, which rise almost 300 feet into the air, frequently lose visibility, 
forcing controllers to rely on radar rather than sight. In low-visibility conditions, safety require-
ments mandate increasing the distance between arriving and departing aircraft by up to 50 
percent, dramatically decreasing traffic flow.

The combination of high and increasing flight volumes, few runways, and cloudy skies is a 
problem for NATS, Britain’s sole air traffic control provider. In Europe (in contrast with the 
United States), funding for air traffic control is tied to air traffic volumes. This gives NATS 
strong incentives to innovate a way to cope with London’s variable weather patterns. 
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NATS has recently responded to these incentives by developing — in collaboration with Searidge 
Technologies, a Canadian software firm focused on ATC applications — a set of specialized cameras 
and video displays that together allow Heathrow’s air traffic controllers to operate continuously, 
even in periods of low visibility. NATS’ new “digital tower” setup is equipped with an AI-based image 
recognition model that flags when an aircraft has cleared its runway.

Verifying the performance of NATS’ image recognition model is of critical importance: 
mistakenly clearing a plane for landing or takeoff before another plane has cleared the runway 
could lead to a collision. But an established methodology for verifying the performance of 
an AI-based image recognition model simply does not exist. Moreover, early versions of the 
model were brittle, failing often and in unexpected ways. For example, British Airways planes 
have a different paint scheme from most other planes in the model’s corpus of examples, and 
performance worsened considerably as a result.

Fortunately, as with any AI model, adding many more cases to the model’s training data has 
allowed it to achieve far higher levels of accuracy. Perhaps unexpectedly, NATS was able to 
reach impressively high performance levels in a much shorter time than they would have 
expected from a more traditional software approach. The latest model has been exposed to 
40,000 novel real-world examples, and has achieved very low margins of error. Further testing 
is required, however, and even if all goes well, the system will be used only to aid air traffic 
controllers’ decision-making. 

What can we learn from this example about the aviation industry’s appetite for safety-critical AI 
applications? First, it is striking how serious the need for AI was at the time of implementation. 
Inclement weather, exceptionally high traffic volumes, and a funding structure that incentivized 
increased air traffic all helped to generate the demand for an AI application. And despite all 
of these factors, the image recognition software that NATS ultimately developed, though 
groundbreaking in the context of air traffic control, is limited to decision support. As one 
expert knowledgeable about the project emphasized, the goal is not to replace human 
operators. Instead, “the question is, how do I make the human controller more effective, giving 
them decision support to handle repetitive tasks?” Other experts echoed that the idea of 
replacing human operators remains a far-off goal. For now, even in the most ambitious firms 
working in aviation, the focus is on user support, not replacement.

The effort to bring AI to Heathrow air traffic control marks one of the most ambitious current 
efforts at bringing AI to a safety-critical use case. It demonstrates both the promise of AI and 
the relative conservatism of aviation, even at the most innovative end of the spectrum. 



21

T H E  F L I G H T  T O  S A F E T Y - C R I T I C A L  A I T H E  F L I G H T  T O  S A F E T Y - C R I T I C A L  A I

CAUSES AND CONSEQUENCES OF AVIATION’S CONSERVATISM

In 1999, The Economist, Fortune Magazine, and other major outlets ran a seemingly innocuous 
ad for Airbus’ new four-engine A340 aircraft. It showed a single A340 flying over stormy seas 
under a dark cloudy sky. The caption: “If you’re over the middle of the Pacific, you want to be in 
the middle of four engines.”

Airline executives — Airbus’ customers — hated the ad, which seemed to imply that crossing 
the Pacific on an aircraft with just two engines is unsafe. (In reality, a two-engine aircraft is just 
as safe as a four-engine aircraft.) Gordon Bethune, CEO of Continental Airlines, immediately 
wrote Airbus President Noel Forgeard complaining that the ad exploited “the unfounded fears 
of the traveling public.” American Airlines VP Tom Horton said the ad “shocked” him.49 

In the aviation industry, competing on flight safety is taboo.50 All western airlines and aircraft 
manufacturers have to meet exceptionally high safety standards; and undermining public 
confidence in flying’s safety hurts all firms in the industry. As a Boeing spokesperson stated 
in response to the Airbus ad, “To infer that one type of aircraft is safer, or another is riskier, is 
inaccurate and inappropriate.”51 Airbus stopped its ad campaign, though three years later, it ran 
a softened version (“4 engines 4 long haul“), which was also quickly canceled after provoking 
further ire from airlines.52

Simply put, flying scares many people. This observation accounts for much of the aviation 
industry’s conservatism and has shaped the industry’s approach to safety-critical AI thus far. In 
surveys measuring the dread that the public feels toward a range of activities and technologies, 
respondents consistently rank aviation second, behind nuclear power.53 Aviation safety 
regulators often morbidly observe that “regulations are written in blood,” but it may be more 
apt to say that they are written in newspaper headlines.

Because accidents in other industries typically provoke much weaker public response, their 
regulators often have less power to enforce safety standards, and firms have more leeway 
to use unproven technologies like AI. Experts frequently compare aviation’s approach to 
AI with that of automotive firms developing self-driving vehicles. “The aviation world is a 
very conservative one,” said one expert. “I look at other areas where I would have more 
concern about the reliance on AI — even down to trials of automated vehicles. Look at the 
environment they’re operating in: it’s very uncontrolled.” While most interviewees agreed that 
the automotive industry has taken greater safety risks than the aviation industry, they did not 
necessarily view this as problematic. As one expert from EUROCONTROL said, “We are quite 
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curious about the automotive industry — we have the impression that they are moving fast. 
But it’s so unsafe to drive that I suspect AI can really help.”

The gulf between aviation firms and most internet firms — famously fast adopters of AI — is 
even bigger. Consider reliability engineering at Netflix, a firm renowned for, among other things, 
its exceptionally reliable, high-quality streaming services. Those services depend critically on 
Netflix’s ability to deliberately cause system failures and learn from them. The Netflix tech blog 
avers: “It’s no secret that at Netflix we enjoy deliberately breaking things to test our production 
systems. Doing so lets us validate our assumptions and prove that our mechanisms for handling 
failure will work when called upon. Netflix has a tradition of implementing a range of tools that 
create failure.”54 Reliability engineering at Netflix begins with simulations, but ultimately extends 
to experiments on actual users. Sometimes, deliberate system failures turn out to be more 
extreme than engineers anticipate, with real consequences for streaming services. But these 
failures rarely make headlines or inspire new regulations, and thus they typically have limited 
consequences for the firm’s bottom line.55

In aviation, by contrast, the costs of air accidents dwarf the learning benefits: the goal is to get 
as close to failsafe as possible, without ever failing in the real world. This requirement makes 
development and testing far more expensive and time intensive. It also necessitates a “safety 
culture” that is foreign to most other industries (Box 5).

Box 5. Crew Resource Management

The safety culture of the aviation industry underpins much of its safety success and is substantially 

the result of a battery of (expensive) safety training programs.56 Perhaps the most famous of these is 

crew (or cockpit) resource management (CRM), a set of training procedures first developed by the 

U.S. Federal Aviation Administration and now required for airline personnel operating in either U.S. 

or European airspaces. CRM focuses not on the technical details of flight safety, but on the social 

and cognitive skills required for gaining and maintaining situational awareness, solving problems, and 

making decisions. Trainees learn to recognize hazardous attitudes such as “anti-authority,” “impulsivity,” 

“invulnerability,” and “macho,” as well as how to use error management techniques, such as following 

standard operating procedures, communicating risks, and maximizing safety redundancies. 

CRM has applications outside of the cockpit. It has since been adapted to air traffic control, aircraft 

design and maintenance, and other safety-critical industries such as rail transportation, healthcare, the 

military, and firefighting. It might be profitably translated to less safety-critical industries as well, but it 

is unclear whether firms in these industries would willingly pay the cost of training. 
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Given the lower cost of accidents in other part of the software industry, software firms at-
tempting to build tools for aviation face a steep learning curve. One interviewee had worked 
with a software firm that developed multiple products for an aviation manufacturer. He noted 
that “the second time around was much easier. You have to get used to different working proce-
dures and have a good system. In the end, the products were robust: I understand why the regula-
tions are there. We’re just used to managing changes in a much more flexible way.” He went on to 
note that, had his company followed its usual testing process, it “would have made several errors. 
The guy writing software code can’t be the guy writing tests. . . . In a generic software company, 
it’s basically the opposite. For example, it’s Microsoft’s policy that devs should also do the testing, 
so they learn more from their mistakes. You can’t do that in aviation.”

An additional challenge to AI development stems from the financial hardship imposed by the 
long certification process. In military avionics, for example, where the acquisition process 
is especially harrowing, firms often find themselves stuck in the so-called “Valley of Death”: 
the transitional period between science and technology experimentation and full-scale 
implementation, where changes in funding mechanisms often leave firms unfunded for 18 to 24 
months.57 Firms like Boeing have the capital to manage this gap, but smaller software firms very 
often do not.

For all of these reasons, in addition to tackling the technical AI safety problem, AI firms moving 
into safety-critical domains will likely need to develop new norms, processes, and even business 
models in order to make the transition as smooth as possible. 
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Recommendations
Expeditious progress in the field of artificial intelligence could bring significant economic 
and even safety benefits. But some of the most valuable applications of AI require not only 
increased capabilities, but also the confidence — among firms and governments, as well as 
consumers and the general public — that these systems will behave as expected. The challenge 
going forward will be to develop the bureaucratic and technical know-how necessary to build 
and certify safety-critical AI systems. This section presents recommendations for both poli-
cymakers and technologists seeking to foster the development of highly reliable AI systems, 
drawing on the insights gained through interviews with experts.

POLICYMAKERS: SCALE UP INVESTMENTS IN TEVV FOR AI SYSTEMS

The case of aviation demonstrates the urgent need for progress in testing, evaluation, verifi-
cation, and validation (TEVV) for AI systems. Research agendas are developing in this area: for 
example, DARPA’s TrojAI, Explainable AI, and Assured AI programs represent promising steps 
in this direction. But further funding is warranted. A range of safety-critical tasks that could 
benefit from AI solutions cannot be implemented because of the currently weak technical 
understanding of these systems. Funding should not focus only on achieving breakthroughs 
in technical AI research; domains like transportation and healthcare will need resources to 
adapt their usual certification processes to account for specific features of AI, such as its heavy 
dependence on data. Funding can help accelerate this process, and unlock significant economic 
benefits across a range of industries.

REGULATORS: COLLABORATE ON AI SAFETY STANDARDS AND 
INFORMATION-SHARING

The risk of regulatory races to the bottom on AI safety, at least between Europe and the United 
States, appears relatively low in the aviation industry. At the same time, regulators in Europe did 
express worries that the United States and China might more quickly adapt to an AI future, and 
that this might create pressures to compromise on safety. Active efforts to foster collaboration 
across regulators, including China’s Civil Aviation Administration, will help to ensure a unified 
and uniformly safe set of AI regulations that firms can rise to meet.
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More generally, regulators on both sides of the Atlantic expressed great interest in improving 
communication and information-sharing across regulatory agencies. The same is true of 
those working on AI safety challenges outside of the aviation industry. Multiple interviewees 
expressed the sentiment that they are all working on the same problem from different angles, 
and that they would benefit from further cross-industry collaboration on AI safety.

Meanwhile, regulators in other industries where AI plays an important role could consider ap-
plying lessons from the aviation industry. For example, regulators should provide incentives for 
firms to share information on AI accidents and near-misses.58 Aviation regulators have deliber-
ately developed forums and incentives for sharing information about possible safety hazards. 
Firms must recognize that they will not be punished for being open about mistakes, and that 
they will benefit from learning about others’ safety difficulties. Investigations into the Max 737 
accidents suggest that, while aviation has historically maintained relatively high levels of open-
ness, stronger incentives may be needed to encourage openness.

FIRMS: PAY THE PRICE FOR SAFETY IN ADVANCE

The aviation industry has learned the hard way that it is always worth paying for safety upfront, 
rather than on the back end. The received wisdom in the industry is that $1 spent discovering a 
safety vulnerability can obviate the need for $10 spent patching the vulnerability during testing, 
or $100 spent patching the vulnerability after rollout of a product. The AI field has largely inher-
ited safety norms from the internet industry, which traditionally has worked on products with 
a very different safety-efficiency tradeoff. But many of AI’s use cases are in physical domains, 
where far higher levels of safety and reliability are required. Firms willing to invest the time and 
expense in developing safe and reliable AI systems may have an advantage in transitioning into 
these more safety-critical industries.

A further challenge lies in establishing improved safety norms surrounding AI development 
and implementation. Unfortunately, a catastrophic AI accident at one firm likely has spillover 
consequences for other firms seeking to use AI as well. It is easy to lose the public’s trust and 
hard to regain it, especially in safety-critical domains.

Partnerships might help AI firms learn the safety norms and practices of safety-critical 
industries. The case of Searidge Technologies’ partnership with NATS on air traffic control at 
Heathrow airport offers an excellent example of the value of partnerships between AI firms and 
aviation firms. Interviewees attested to the great challenges technology firms face in breaking 
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into safety-critical industries like aviation, due to the higher safety demands and regulatory 
oversight. But they also noted the abundance of structured data awaiting firms that manage to 
break into the aviation industry. Partnerships between experienced avionics firms and skilled AI 
firms appear promising.

RESEARCHERS: EXPLORE AI SAFETY RACING DYNAMICS ON AN  
INDUSTRY-BY-INDUSTRY AND ISSUE-BY-ISSUE BASIS

The results presented in this paper suggest that the aviation industry has thus far moved 
slowly toward the development and adoption of safety-critical AI. Yet competition may lead 
to very different dynamics in other industries and issue areas. Other industries with less 
mature regulatory regimes will likely be more susceptible to races to the bottom on safety. 
And Microsoft’s call for regulations to prevent a race to the bottom in facial recognition 
technologies suggests that safety is far from the only area in which AI race dynamics could  
lead to socially harmful outcomes.

One particularly interesting industry to consider in light of the foregoing analysis is the U.S. 
defense industry. Given that fears of a race to the bottom have often made analogies to arms 
racing during the Cold War, a close look at how competition has affected the pace of the U.S. 
military’s adoption of AI seems warranted. Only two experts interviewed in this report had 
military experience. However, both experts agreed that the U.S. military has in fact proceeded 
even more slowly than the aviation industry in adopting safety-critical AI, in part because of the 
especially serious consequences of safety failures within the military.   
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Conclusion
As AI systems become more capable and begin to diffuse into safety-critical domains, technical 
researchers have begun to voice serious concerns about accident risks flowing from novel 
AI applications. AI systems are often unpredictable, opaque, and data-intensive in ways that 
defy the constraints of existing safety management approaches. Yet AI systems are also 
economically and strategically valuable, leading some to worry about the prospect of a “race to 
the bottom” in AI safety.

A deep dive into the aviation industry provides grounds for optimism that, in at least one 
safety-critical domain, firms and regulators are approaching AI tentatively, with ample 
awareness of the risks these systems pose. Experts across the aviation industry attested to 
the importance of  learning slowly about AI, experimenting first with the least safety-critical 
applications and investing time and money in improving understanding of these systems before 
moving toward valuable but more safety-critical applications. For now, there is little sign that 
competitive pressures are sufficient to overwhelm safety imperatives.

This examination of the aviation industry has important implications for policymakers, 
regulators, and firms concerned about AI accident risks. To unlock the benefits of AI, in both 
aviation and other safety-critical industries, this paper recommends further investment in 
methods for testing, evaluating, verifying, and validating the safety, security, and reliability of 
AI systems; encouraging inter-regulator collaboration on tackling the unique challenges posed 
by AI; and paying the price for AI safety upfront, for example, by investing in independent 
verification and validation.

The results also have implications for AI policy researchers concerned about a race to the 
bottom on safety. Regulations will likely play a key role in determining the form of racing 
dynamics in different industries. Researchers should invest further effort in identifying specific 
industries where a race to the bottom may be likely or especially harmful, and explore what role 
standards, regulations, norms, and processes might play in mitigating the risk of AI accidents 
within each of these industries. 
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